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ABSTRACT

Purpose: To ensure an adequate level of accuracy, it is rational to study the ponderomotor 
forces of the ring, which drive a hollow disk of variable thickness, hung on the ring.
Design/methodology/approach: The solution of the motion problem of a hollow disk of 
variable thickness suspended on a force ring of rectangular cross section is based on the 
method of solving the equations of the theory of thermoelasticity. The stress-strain state, 
as well as the motion of the specified body of rotation, the disk, in studies in a cylindrical 
coordinate system, under the action of ponderomotor forces.
Findings: The motion equation of a hollow disk hung on a force ring-torus is made, exact 
solutions of the motion equations of a ring in the torus form of rectangular cross section are 
found. New component expressions of ponderomotor forces, which appear from the action 
of the ring's own electromagnetic field and cause the motion of a hollow disk, have been 
found on the basis of Maxwell's equations. It is proved that at high speeds and low natural 
accelerations the stress - strain state of the disk material does not cause the destruction of 
the structure.
Research limitations/implications: Calculations of ponderomorphic forces are valid for 
the ring, which drives a hollow disk of variable thickness, hung on the ring.
Practical implications: It is proved that at high velocities and small natural accelerations 
the stress-strain state of the disk medium does not cause structural damage. It is determined 
that the rotation in the direction of movement at an angle of 90 degrees changes only the 
direction of the acceleration vector without increasing its value.
Originality/value: The dependences between own time and coordinate time are 
formulated. It is proved that a small change in the natural time for the studied disk can 
significantly change the coordinate time, and the pulsed electromagnetic field provides the 
ability to cover infinitely large distances over finite periods of time.
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ANALYSIS AND MODELLING

 
 
 
 
 
 
 
 
 
 
 

1. Introduction. 
 

It is known that the axisymmetric problems of the 
elasticity theory belong to the class of spatial problems, the 
solution of which has great mathematical difficulties due to 
the fact that finiteness of dimensions causes additional 
mathematical difficulties associated with the need to meet 
boundary conditions on lateral surfaces and ends. Today 
there is no exact solution to the axisymmetric problem of the 
theory of elasticity, which would strictly and completely 
satisfy all boundary conditions on the lateral surfaces and 
ends of the studied bodies of rotation [1,2]. Exact analytical 
models of the torus motion of rectangular cross-section of 
the hollow disk type mounted on the force ring-torus have 
not been compiled today, and existing models [1,3,4] do not 
take into account the presence of all force factors, including 
ponderomotor forces which arise as a result of the action of 
the ring’s own electromagnetic field and bring the hollow 
disk into a movable state. 

Existing models do not provide for the establishment of 
the destruction possibility of the metal structure at the 
emerging speeds and accelerations [5-7], as well as with 
increasing travel time. For the practical implementation of 
existing or development of new tools for analysis of 
reliability and strength [8-15] of any structures with 
preliminary evaluation and diagnosis requires the creation of 
stress-deformed state calculation [16-24] models of their 
structural elements [25-31] as a function that takes into 
account maximum all components of the state of the studied 
systems. It is necessary to study the motion of an elastic 
medium ‒ an axisymmetric body of rotation, a ring in the 
torus form of rectangular cross section, within the 
framework of Newton’s mechanics and relativistic 
mechanics by forming exact solutions of equations. To 
ensure an adequate level of accuracy, it is rational to study 
the ponderomotor forces of the ring, which drive a hollow 
disk of variable thickness, hung on the ring. concentration 
distribution (in volume fraction) of nitrogen and natural gas 
components depending on the distance from the injection 
point of nitrogen and the duration of the purge process, to 

determine of parameters of a non-stationary process, and to 
establish the optimal parameters of the purging process 
under conditions of the given flow chart. 

 
 

2. Methodology of research. 
 

The solution of the motion problem of a hollow disk of 
variable thickness suspended on a force ring of rectangular 
cross section is based on the method of solving the equations 
of the theory of thermoelasticity proposed in [3]. The 
investigated hollow disk is under the action of the Earth's 
gravitational field; its motion is caused by the ponderomotor 
forces of its own electromagnetic field of the force ring. The 
stress-strain state, as well as the motion of the specified body 
of rotation, the disk, in studies in a cylindrical coordinate 
system, under the action of ponderomotor forces are 
considered in [1,3], but not all their components have been 
established which by solving the Maxwell’s electro-
dynamics equation are investigated and defined in this 
article. In the system of cylindrical coordinates (r, z) 
connected to a ring, its conductive medium should be 
considered based on Maxwell's equations. In the state 
studies of the electrically conductive medium of the ring, we 
have the assumption that the ring is in an electromagnetic 
field, which is formed by an electric current in the medium 
of the ring-torus. 

The equation of the vector of ponderomotor forces 
relative to the unit volume of the conductive medium of the 
body [4]: 

 

.sdF E j B       ,   (1) 
 

where j  is the electric current density vector; cd  ‒ charge 
density; B  ‒ vector of magnetic induction; E  ‒ electric field 
voltage vector. 

Suppose that the following components of vectors (in 
cylindrical coordinates) are formed in an electrically 
conductive medium by an electric field (r, j, z)). 
 ;0;0rj j ;  0; ;0B B . 
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Fig. 1. Schematic of the component composition of pondero-
motor forces 

 
The scalar product of these vectors is zero, therefore, 

these vectors are mutually perpendicular, and their vector 
product has one component and is directed normally to the 
plane of the ring, therefore, for the components of 
ponderomotor forces (Fig. 1). 

 

r cd rF E  ; 0F  ; z rF j B  .  (2) 
 

With the accepted components, the vectors of bulk 
current density and magnetic induction of the electro-
dynamics equations in cylindrical coordinates (r, j, z) for a 
body of rotation with axial symmetry and acting axially 
ponderomotor forces will take the form: 

 

   ,,1 ,1
0

*
1 ,

1 ; 0; 0;cd
r t

r t r r

r E B r B
r

j j E

 



 

      

     (3) 

where 
0

1




= – relaxation time of the conductive 

medium; 0 - electrical constant, taking into account that the 

medium has a finite electrical conductivity m; 
*
rE  ‒ radial 

component of the voltage of a foreign electric field; e ‒ 
relative dielectric constant. 

Solving of (3): 
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 

 

     
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 

            

                
    (4) 

 

where 0 is the mass density of the conductive medium; g0 ‒ 
Acceleration of gravity. 

Arbitrary constants D and C are related to the electrical 
conductivity dependence gDC = 1. 

The components of ponderomotor forces are found by 
formulas (2): 

 

       

 

1

1

2 2
0 0 1 1 0 0 0

0 0

, ; ; 2 ;

2 .
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t

z

F r t P t r P t P e P D g const

F t g e





  







          

    
   (5) 

 

An arbitrary structure can be hung on the torus ring, the 
mass of which is added to the mass of the ring (Fig. 2). 

Analyzing (4), the magnetic field  B r  is constant in time 
and appears in the annular coil of the power system. At the 
same time, the conductive medium of the ring is affected by 
a frequency-varying, but constant in the direction of the 

electric field  ,rj r t  current perpendicular to the magnetic 
field. 

 

 
 

Fig. 2. Geometry of the hollow disk 
 
The equation of motion of the ring is written as 3: 
 

 , ,
0i T i t t

F F u   
 (6) 

 

where  ; ;i r zF F F F   are the components of the 
ponderomotor force per unit volume of the ring sector; ui ‒ 
moving the points of the ring body; FT ‒ gravity per unit 
volume of body of rotation: 
 

 
2

0 0
2T
g RF
z t

  
 

 (7) 
 

The motion equation of a ring as a rigid body, in 
spherical coordinates (Fig. 3), () is obtained from (6) 
taking into account (7) and (5): 

 

   

   
1

, ,, ,

2

, 0 2,
0

; ;

1 1

t tt t

t
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Ru g e
t

   




 

 




    

             
        (8) 
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At the speed of the body, much less than the speed of 

light,  v c , 0  . 
 

 
 
Fig. 3. The motion diagram of the ring as a rigid body 
 
From (8), the expression of acceleration for the motion 

of a ring along the axis h, h(t) ‒ the distance from the center 
of the Earth to the center of the coordinate system is 
associated with the ring: 

 

 
1

2

0 21 1
tRg e

t


 

                (9) 
 

From (8), after integration and fulfillment of initial 
conditions for the vertical component of velocity: 

 

1

2

02 2 1
tRV g R e 

  


                  (10) 
 

Acceleration and speed will satisfy the following initial 
conditions: 

 

  ,t R  at 0; 0,t V   at 0; 0,t    0t   
 

That is, near the Earth's surface R  , the ring is in a 
state of weightlessness. The structure attached to it, with 
biological objects inside the structure, g0 is accelerated by 
free fall; the specified structure is in equilibrium. 

The acceleration of free fall    2 2
0 /g t g R t at 

relatively low altitudes varies slightly - indeed, since the 
average radius of the Earth = 6371 km, even at an altitude of 
several hundred kilometers above its surface 300R R  

km acceleration varies slightly (≈ 4.5%). Thus, in the 

specified environment of the Earth it is possible to accept 
acceleration (9) and speed (10) at the movement normal to a 
surface of the Earth, km/s: 

 

1 1
0 01 ; 2 1 .

t t
g e V g e 

  
            

     
 

Taking 1

1 4



at t  3 s, it turns out 11 1
t

e 


  : 
2

0 9,81 m / ;g s     02 11, /2 .km sV g R      
Considering that the disk moves evenly, it moves away 

from the Earth with medium acceleration 0400b g . In fact, 

the actual acceleration of the disk 0g  does not exceed the 
acceleration of free fall g0 near the Earth's surface. Thus, the 
moving disk reaches the second cosmic speed in 3 seconds 
and can leave the Earth's boundaries. Observing from the 
Earth obviously, the disk will move away with huge 
acceleration 0400b g . It is well known that when a body 
moves with acceleration 20g0, visually through the eyes of 
an observer on the Earth, such acceleration of the 
observation object is perceived as almost instantaneous 
disappearance. Thus, the well-known thesis about large 
overloads that can occur in a disk that moves at speed 

11,2 /kmV s   is not reasonably convincing, as its actual 
acceleration will not exceed g0. Therefore, the metal 
structure of the disk and the biological objects inside will not 
be significantly overloaded. 

 
 

3. Results and discussion. 
 

The previously obtained acceleration formula
 1/

0 1 tg e 


    characterizes the actual acceleration of 

a moving disk, which, of course, does not coincide with the 
acceleration of the disk observed in the frame of reference 
associated with the Earth. According to Einstein's work [4], 
every reference body (coordinate system is connected to the 
body) has its own special time. The time indicator makes 
sense when the count to which it refers is indicated. Next, it 
is assumed that t- the coordinate time, which is measured for 
the body on the Earth's surface. The reference frame of a disk 
moving relative to the Earth registers its own time . In this 
case, the formula for the acceleration of the disk will be as 
follows: 

 

1
0 1g e





   

 
 (11) 

3.	�Results and discussion
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This is natural, because the ponderomotor force that 
drives the disk arises from the action of the body's own 
electromagnetic field of rotation. So it is written: 

 

  1
0 0 2zF t g e




   
 

. 

 

The speed of the disk when considering its speed relative 
to the Earth is written as (12): 

 

1
02 1tV V V g e




   


       (12) 
 

Find the formula for the acceleration of the disk observed 
from the surface of the globe. To do this, it is necessary to 
formulate the relationships between proper time  and 
coordinate time t in the framework of Newton's theory of 
long-range and Einstein's theory of short-range [12,13]. The 
special theory of relativity considers a relativistic slowdown 
of time ‒ an event in one inertial frame of reference is 
simultaneous in another reference frame, which moves 
relative to the first, they can be separated in time. When the 
body moves in this system with speed, V its motion is 
described by counting time t (coordinate time), the 
differentials of coordinate and natural time τ are related by 
the dependence [12]: 

 

2

21 Vd dt
C

   . 

 

where,  d dt V C    that is, the interval between signals 

for the observer moving relative to the signal source 
increases. 

We study the property of space-time near the 
gravitational mass M, which is considered as a material 
point. Nearby M there "realized" static centrally symmetric 
space-time [5]. This means that all values of the 
Schwarzschild’s solution5 are functions only at a distance 
from the center of mass of the sphere and do not depend on 
time t. At a considerable distance from the mass M, the 
obtained solution leads to the same result that follows from 
Newton's theory at R   (R- the radius of the globe by mass 
M). From the Schwarzschild’s solution the dependence 
between own time and coordinate time is received t [13]: 

 

1 grd dt


  , (13) 

 

where 22 /gr M C is the gravitational radius of the body 

(for the globe = 0.89 cm). 
Clocks that are in the gravitational field work differently 

than clocks that show their own time at a great distance  

from the gravitational masses, which comes from the 
dependence: 

From the formulas 2

21 Vd dt
C

  
 and 1 пd dt 


  it is 

clear that  gV C r    dt d , and own time coincides 

with the coordinate. 
From (11), for the velocity, the vector of which is 

directed vertically to the Earth's surface, we obtain and is 
written as (14): 

 

 1

2

0 1 .
2

V g e t

  

         
 (14) 

 

From (13): 
 

1

2

0 1 .
2

mV mg e



   
 

 

 

Near the Earth: 
 

 0 2 .Mmmg R 


    

 

Using this expression: 
 

1

0

1

Mmmg
e









 
  
 

, 

 

where:  
 

1

2
2

2

2

1

M CV
C e





 

 
  
  , or 

1

2

2
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grV
C e







  
  ; 

2
2

g
Mr

C
  

  . 
 

On the other hand, the known speed formula1: 
 

2

2

1

g

g

rV
rC





 
 

  . 
 

If we assume 1gr e







  that the formulas are the same 

and in our case of Newton’s mechanics there is a similar 
formula for slowing down time: 

 

111 g

d ddt
r e




 




 


 (15) 

 

when the initial moment of own time we accept not equal to 
zero , and, at the beginning of movement of a 
diskt, coordinate time is equal to own. 
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0 0
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0, if ;

0, if ;

, if .

t t t

V t t t

R t t t





 



 

     

     

     

 (16) 

 

Expressions (16) are the initial conditions for the disk 
near the Earth's surface. In this case, all formulas can be 
rewritten by replacing τ with τ – τ0. For example, for the 
vertical component of the ponderomotor force: 

 

 
 

 

0
1

0 0 2 .z

z

F F t g e

F F

 







  

   
 



 

 

For the time delay formula (15): 
 

 0
11

ddt

e
 




 





 (17) 

 

When 0 , dt d      we have the coincidence of our 
own time with the coordinate. Formulas for disk speed and 
acceleration in their own frame of reference: 
 

   0 0
1 1

0 01 ; 2 1 .t tg e V V g e
   

 
   

    
      

 

 

 

When 0  , then 0t   and V = 0, at the same time 

0; 0 11,2 km/s, 6371 kmt g V R        - the radius of 

the Earth. The formula for velocity has a meaning near the 
Earth's surface R   since 0   and dt = d. 
Practically this equation of intervals of own and coordinate 
time comes at 

0
1 0

1 4 ; 3 s
c

  
 

       and near the Earth  

( = R), we receive: 
0;g   

02 .tV V g R     

We believe that at the initial moment of time t =  = 0 
the disk does not move and is near the Earth's surface. From 
the physical essence of the problem we obtain and is written 
as (18): 

 

 1
10 1 1e

 


 

   ; that is 
 1

10 1.e
 


 

      (18) 
 

From here: 0

1

0 




    (19) 

 

To find the relationship between proper time  and 
coordinate time t, it is necessary to integrate (17). By 
substituting the variable and using the initial conditions  
(t =  =  1) it is obtained 

 

 

0
1

0
1

0 1
1 1ln
1 1

et

e

 


 


 

 

 

 
  

   
   

  (20) 

 

Dependence (20) characterizes the coordinate time as a 
function of its own time. By analogy, the inverse expression 
is obtained: 

 

 

 

0
1

0
1

2

0 1
1ln 1
1

t

t

e

e







  

 

 

  
          

. (21) 

 

The actual acceleration of the disk is calculated by (11). 
Now we find the acceleration of the disk, which the observer 
sees from Earth (

t ), for which we use the equation of disk 

speed and expression (21) we obtain and is written as (22): 
 

 
 

 

0
0 1

1

0
1

0 0
12 1 2 .
1

t

t t

eV V g e g
e


  


  



 

 
 

 


   



  (22) 

 

Due to the equality of absolute values of velocity relative 
to the observer on Earth and the observer from the side of 
the disk (

tV V V    ), there was found the acceleration of 

the disk observed from the Earth: 
 

 

 
 

0
1

0
1

0 2

1

22 .

1

t

t

dV eg R
dt

e





 



  



 

 
   

 
 

 

 (23) 

 

At the initial moment (
0t    )is written as (24): 

 

 0
0

1

2
. ;

2
g

R t


  


    

  (24) 

 

Hence, at 
1

1 4
c

 , we get:  0 02 2 . .g t       

 

At 
0

1

1 43 andt s
c




     : 0t  . 

Therefore, the acceleration of the disk observed from the 
Earth varies from its mechanical value at the initial moment 
of time 0t   to zero at 0t    this occurs at 

0 3t s    when 11/ 4/ c  for the coordinate time. Thus, 
the acceleration of the disk observed from the Earth varies 
from the maximum value to zero. The actual acceleration of 
the disk varies from zero to g0 and does not exceed the 
acceleration of free fall. The average acceleration of the disk 
observed from the Earth, using the known theorem on the 
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average, for 3 seconds ( 0 0 3t    ) from the initial time 
t = 0: 

 

0

0

1 ,
t

tb dt
t










 

 

 

where  0 03 3 s.t         

From here: 
 

 

 

0
0 1

0
0 1

3
0

0 02

1

21 22 ; 4 0 0 .
3 3

1

t

t

geb g d t g

e


 


 






 


 
  

 
 

 



 

 

Thus, the above-found equation of the average 
acceleration is obtained, which proves that the formula for 
the acceleration of the disk (23) observed from the Earth and 
the dependence of the coordinate time on its own time (15) 
are valid. 

It is investigated (20) that expresses the coordinate time t  
through its own time  in the disk, from the conditions

0

1

0 



 . Hence, two cases were obtained, taking into 

account, 
1 0

1 
 

  , 0 > 0,  ‒ conductivity of the torus-

ring depending on the positive or negative value of the 
conductivity. It is known that there are semiconductors in 
which the volt-ampere conductivity characteristic has a 
branch of negative and positive resistance. For conductors 
that obey Ohm's law, their volt-ampere characteristic is 
straightforward. 

The case of positive conductivity of the medium when 
changing its own time  that is in the disk: 

 

1 0

1 
 
   , and since 0  , then from the condition 

0

1

0 



 , received 
0 0   ; 

0.    

Let 
0 3 s    ; 

1

1 4

 , then 

 0
11 1e

 


 

  . 

From here: 
 

 

 

0
1

0
1

1 1lim ln .
1 1

e

e

 


 


 

 

 
  

 

 

so t   at 0 3 s    ; 
1

1 4
s


. 

For negative conductivity of the medium: 
1 0

1 0
 

  , 

and
00, 0,        0 0, 0      and (19) written so: 

 

 

0
1

0
1

0 1
1 1ln
1 1

et
e

 


 


 

 

 

 
 

 

 at 

 0 0
1

13 3 , 4, .t   


          

 

Thus, in the interval of the relaxation parameter change 
of the conductive medium: 

1
1 1
4 4

    

For coordinate time it is t    . For the interval 
of own time it is 0 03 3.      Where, at insignificant 
change of own time in a disk, coordinate time can change 
considerably in positive and negative time directions. 

For tangential disk movement in the direction  and  it 
is enough just to turn on the sector of the power ring, which 
produces a radial component of the ponderomotor force. 
Consider the element of the sector that produces the radial 
force (Fig. 4). 

 

 
 
Fig. 4. Diagram of a sector element that produces a radial 
force 

 
In this case, for a unit volume of the power ring sector, 

the direction of the current density j and B magnetic 

induction vectors:    0; 0; ; 0; ; 0 .zj j B B      

All components of vectors are considered in the system 
of cylindrical coordinates of a disk  ; ;r z  .

 In this case, 

the components of ponderomotor forces: 
.; 0; .r z z св zF j B F F E         

Maxwell's electrodynamics equations take the form: 
 

.
,3 , ,2

0

; 0; 0.св
z tE B B 




      

 

Their solution was obtained in the form of: 
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 0
1 1*

0 0 . 0 01 ; 0; 1 .
t tt

z св zj D g r e E D g r e    
              

   

 

 

In this case, the radial components of the ponderomotor 
force per unit volume of the ring sector: 

 

1
0 0 1 ; 0; 0,

t

r zF g e F F


       
 

 

 

where 1DC   and equation (8) will look like: 
 

   

   

1 1

1

, 0 0 , 0 0, ,

2

, 0 0 2,

1 ; 1 ;

1 1 .

t t

t tt t

t

t t

u g e u g e

Ru g e
t

 
 




   

 


 



          
   

          
    

 (25) 

 

Assuming, as before,
0   and integrating (25), we 

obtained the component of acceleration and velocity of the 
disk in the horizontal direction: 

 

1 1
, 0 , 0 11 ; 1 ,

t t

tt tu g e V u g t e 
    

                   
 

 

Similar expressions for velocity and acceleration in 
direction  for spherical coordinates associated with the 
Earth. 

Consider the motion in the plane ( ,r  ), acceleration: 
 

 
1 1

2 22
2 2 2 2

0 021 1 1 .
t tRg e g e

t
 

    


                    
      

 

 

Velocity: 
 

1 1

2
2 2 2

0 0 12 2 1 1 .
t tRV V V g R e g t e 

     


                              

 

 

Near the Earth, believing, R  , we find: 
 

1 1 1

2
2

0 0 0 12 1 ; 2 1 1 .
t t t

g e V g R e g t e  
  

                          

 

 

Hence, the acceleration 
0 2g  does not exceed 

1.41g0 and significant overloads in the body do not occur, 
and the speed can be much higher than the first space speed. 
Since the movement occurs when the engine is turned on  
( 1/1 1te   ), then: 

 

 2
0 0 0 12; 2 .g V g R g t        

 

The accelerations experienced by biological objects 
inside the disk are shown in Figure 5. Taking into account 

the action of gravity, biological objects will experience 
acceleration  ≤ 2.2 g0. When turning on the engine sector 
in the direction perpendicular to the plane (), 
acceleration is

0 06 2,4g g   . This is the maximum 

acceleration in three mutually perpendicular directions, 
taking into account the free fall, for biological objects and 
the structure hung on the power ring. The speed of 
movement will be huge. The force ring will have less 
acceleration because it is affected by the acceleration of 
gravitational force, which it levels. When leaving the Earth's 
gravitational field, the maximum acceleration does not 
exceed: 

0 03 1,71 .g g    
 

 
 
Fig. 5. Accelerations acting on biological objects in the 
hollow disk 

 
All accelerations are short-lived and do not cause 

overload. 
Now consider the problem of moving the disk in the 

horizontal direction. Provided that the disk is above the 
Earth in weightlessness, its motion along the tangent to the 
surface in the direction,  or 1 (Fig. 6) is considered. 

V0,t = X, that is the tangent  direction X (t) - the tangent 
law of motion to the Earth of the disk, which is observed by 
the observer from the middle of the hollow disk. 
Acceleration in Newton’s mechanics (= 0): 

 

 0
1

, 0 1x ttx g e
 




  
   

 
 

 

where 0 is the reference time for horizontal motion. 
The speed of the disk relative to the Earth: 

Vx = X, 
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Fig. 6. Diagram of the disk in the horizontal direction 
 
Acceleration of gravity: 
 

 2
, , , , ,

1 .
2x x x x x x x x

V V X V X V x        

 

From there: 
 

 0
12

, 02 1 .x xV g e
 


  

  
 

, integrating obtained 

 0
12

, 02 1 ,x xV g x e
 

 
  

   
 

 

 

where   – arbitrary integration function. 
From extreme conditions 0xV  , when 0   and 
0C   the velocity equation is obtained: 

 

 0
1

02 1xV g x e
 


 

    (26) 
 

Hence, when 0   , the speed increases 
indefinitely with increasing distance X. Now we get the 
speed as a function of our own time : 

 

 0
1

, 0 1x xV g e
 


 

  
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 
  (27) 

 

from (27): 
 

 0
1

0 11 ,xV g e d
 
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  

   
 
   

where 
1 – arbitrary integration function. 

After integration:
 0

1
0 1 1xV g e

 
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  
   

 
 

so 0xV  , at 0  , then  0 1 1 0g      . 

From here, for speed we get and is written as (28): 
 

 0
1

0 0 1 1 .xV g e
 

  
         

   
 (28) 

at , .xV      
 

Find the law of motion  X  and the distance covered by 

the disk for the interval of its own time. Since, ,xV X  then: 
 

   0 0
1 1

0 0 22 1 or 2 1dxdx g x e d g x e d
x
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      
        

   
 

 

 

where 2  – arbitrary integration function. 
Replacing a variable by formulas: 
 

       0 0 0 0
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
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udud
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 whereupon: 
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1

0 22
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1

dx u dug
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After integration found: 
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
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
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 
 

 
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     
     

 

 

From the boundary conditions 
0 20,if і 0,X        

the law of motion in the horizontal direction is obtained (29): 
 

 
 

 

 
0

01
1

0
1

2

2
0 02 1 1ln 2 1
4

1 1

g eX e

e

 
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

 




 
 

 

  
   

    
     

   (29) 

at 0 , .X        
 

However, this result can be obtained in a short period of 
time 

 

0 0 3 s,       at 
1

1 4
с


. Really   ,X     at 

0
1

1 43s; .
с

 


      
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Thus, for a finite period of your time you can cover long 
distances. 

 
 

4. Conclusions 
 
The motion of a hollow disk suspended on a force  

ring-torus is investigated, exact solutions of the motion 
equations of a ring in the torus form of rectangular cross 
section are found. Based on Maxwell's equations, analytical 
dependences have been found for calculating the 
components of ponderomotor forces that arise from the 
action of the ring's own electromagnetic field and cause the 
motion of a hollow disk. It is proved that the obtained 
equations of average acceleration, disk acceleration and the 
dependence of the coordinate time on the natural time are 
valid. It is proved that at high velocities and small natural 
accelerations the stress-strain state of the disk medium does 
not cause structural damage. It is determined that the rotation 
in the direction of movement at an angle of 90 degrees 
changes only the direction of the acceleration vector without 
increasing its value. 

The dependences between natural time and coordinate 
time are formulated, it is proved that a small change of 
natural time for the studied disk can significantly change the 
coordinate time, and the pulsed electromagnetic field 
provides the ability to cover infinitely large distances over 
finite time periods and cover large time intervals for 
insignificant natural time.  
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