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ABSTRACT

Purpose: Automatic Optical Inspection (AOI) systems that are extensively used in the
industry of Electronics Manufacturing Services (EMS), performs the inspection of Surface
Mount Devices (SMD). One of the main tasks of such an AOI system is to align a given PCB
to the parameters of the corresponding PCB positioning system by a process called fiducial
alignment. However, no detailed analysis has been carried out so far on the methodologies
that can be used to have a very precise identification of PCB fiducial points. In our research,
we have implemented an AOI system for the inspection of soldering defects of Through
Hole Technology (THT) solder joints, which can be integrated to a desktop soldering robotic
platform. Such platforms are used in environments where no specific lighting conditions
can be provided within a surrounded atmosphere. Therefore, an AOI system that is capable
of performing fiducial alignment of any given PCB under varying lighting condition is
highly preferred. In this paper, we have presented a detailed analysis on feature extraction
and template matching algorithms that can be used to implement a very precise fiducial
verification process under normal lighting condition.

Design/methodology/approach: A detailed analysis and performance evaluation
have been carried out in this paper on prominent image comparison algorithms that are
extensively used in the field of image processing.

Findings: According to the analysis carried out in this paper, it could be observed that
the combination of feature extraction and template matching algorithms gives the best
performance in PCB fiducial verification process.

Research limitations/implications: This paper only presents the implementation of the
front end of our proposed AOI system. The implemented methodologies for the automatic
identification of soldering defects will be discussed in separate research papers.

Practical implications: The methodologies presented in this paper can be effectively
used to implement a very precise and robust PCB fiducial verification process that can be
efficiently integrated to a desktop soldering robotic system.

Originality/value: This research proposes a very accurate fiducial verification process
that can be used under varying lighting conditions on a wide range of different PCB fiducial
points.

Keywords: Automatic Optical Inspection, Feature extraction, Template matching, SIFT,
SURF, FAST, Box filtering, FLANN
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1. Introduction

In modern electronics manufacturing industry,
automated production process is preferred due to increasing
cost for labour, skill dependency of human operators, less
availability of manpower and etc. Soldering robotic
systems [1] are one of the versatile machines, which have
been developed to fulfil the requirement of a human
operator to perform soldering process automatically. These
systems are useful when soldering the components, which
cannot be soldered through wave soldering and selective
soldering machines [2], due to low temperature, withstand
capability. However, none of the commercially available
soldering robotic systems is equipped with real time quality
inspection capability. The soldering robotic system with an
integrated automatic optical inspection (AOI), will provide
real time quality inspection capability over solder joints
while improving the overall efficiency of the system.
We have presented detailed analysis that covers the first
stage of the AOI platform, where the solder pad area is
precisely identified from the PCB surface in [3]. There the
colour models that render optimum outcome for different
solder pads and PCB colours have been evaluated based on
their accuracy in transforming foreground and background
colour vectors with much larger vector length difference.
It could be proved that the behaviour of the same colour
model varies with the varying PCB colour and the solder
pad type. In that paper, methodologies for eliminating the
effect of uneven light distribution over the solder pad area
and offsets between the PCB surface and the solder pad
area were informatively presented.

Even though the positioned solder pads can be
accurately identified by the vision system as presented in
our paper [3], it still cannot differentiate between solder
pads on different PCB types. Our proposed AOI system has
been designed to produce a fully automated desktop
soldering robotic system. Therefore, the vision system must
be capable of precisely identifying whether the PCB under
solder (PUS) is the correct one that should be soldered by
the robotic platform or not. This task can be accomplished
by comparing user defined master points, which are also
known as fiducial points, extracted from model images
taken from the golden sample (GS) PCB, and input images
taken from PUS. This process is referred to as fiducial
verification. In this paper, we present a detailed analysis of
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extensively used feature extraction and image comparison
algorithms for the implementation of fiducial verification
process. The fiducial verification process is not only useful
for differentiating between different PCB types, but also
for aligning PUS to the robotic system platform. This
procedure is also known as fiducial alignment, which is the
process of estimating relative distances to all the points on
a PCB with respect to the calculated distances from the
system origin to the defined fiducials on the PCB.
Minimum of two fiducial points must be defined from the
computer aided design (CAD) file relevant to that
particular PCB in order to have an accurate calculation of
relative distances to rest of the points on the PCB.

In this paper, Section 2 presents a detailed overview on
commonly used feature extraction algorithms in various
automatic vision applications. Section 3 presents the
performance evaluation of feature extraction algorithms
described in section 2, along with commonly used distance
matching methods for feature matching between model and
input images for the implementation of fiducial verification
process. Section 4 describes the analysis and performance
evaluation of template matching algorithms for the accurate
localization of model image (/),) area within the input
image, once the existence of model image inside the input
image is verified by the selected feature extraction
algorithm described in section 3. We have presented the
conclusions made on the analysis carried out in section 2 to
4 under section 5. This section also presents a brief
overview on the implementation of quality analysis stage
for the automatic quality assurance of a solder joint.

2. Algorithms for fiducial verification

Computer vision can be mainly carried out by two
methods.

e Template matching,
e Feature extraction.

In template matching method [4-8], the occurrence of a
model image inside the input image is computed by
convolution between model image and input image. Various
algorithms have been proposed for template matching like
CCOEFT, normalized CCOEFT, CCORR, normalized
CCORR, SQDIFF and normalized SQDIFF etc. [9,10]. The
resulted image from the above algorithms contain a global
optima which corresponds to the best matching point as
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illustrated in Figure 1. Therefore, the application of template
matching algorithm does not provide precise outcome, when
the existance of the model image is not exactly known prior
to the use of these algorithms. Therefore, it should be clear
that fiducial verification process cannot be done effectively
using above template matching algorithms according to the
images provided in Figure la.

Model Image

CCOEFF

SQDIFF_NORMED

@

Model Image

CCORR_NOREMD SQDIFF

(b)

Fig. 1. Best matching points detected by various template
matching algorithms. (a) Matching of model image with an
input image from a different PCB type. (b) Matching of
model image with an input image from same PCB type
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In feature extraction methods, features are identified
from a model image and their subsequent matching in the
input image are found. There is no clear definition for
‘feature’, but there are some properties that can be
evaluated at a given point, to decide whether that particular
point/area is a good feature or not [11].

A feature should be:

e perceptually meaningful,
e analytically special (Ex. minimum or maximum point in

a given data set),

e casily distinguishable in different images,
e invariant to scale, orientation, illumination and etc.,
e insensitive to noise.

In order to compare images based on their features,
many research works have been carried out. They mainly
rely on extracting features/key points in a given model
image and find their corresponding matching in input
image at different scales and orientations [12]. Various
algorithms have been proposed for the extraction of
features of a given image, like kadir and brady algorithm
[11,13], SIFT [8,10,14], SURF [15-17], FAST [18],
Principle component analysis (PCA) [19], Independent
component analysis (ICA) [20] and etc. In this study, SIFT,
SURF and FAST algorithms have been taken into
consideration because of their proven robustness, accuracy
and fast detection of key points in an image. Figure 2
illustrates feature matched images using above stated
algorithms.

an

Fig. 2. Feature matched images using SIFT (row a), SURF
(row b) and FAST (row c) for wrong PCB (column I) and
correct PCB (column II). Red lines depicts matched
features
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According to Figure 2, it can be seen that feature
matching algorithms render better outcome compared to
template matching algorithms (Fig. 1) when assuring the
existance of model image inside a located image. Next
section presents a brief explanation on SIFT, SURF and
FAST algorithms respectively.

2.1. SIFT

SIFT, Scale Invariant Feature Transform, is a method of
extracting of distinctive invariant features from a model image
that can be efficiently used to perform accurate matching
between different views of that model image occurred inside a
given input image [21]. The detected features are proven to be
invariant to scale, rotation and provide robust matching across
a substantial range of affine distortion, noise, and illumination
variation [21]. This algorithm can be described as a
combination of following sub stages, where each stage adds a
weighted outcome to the next stage.

e Constructing a scale-space: implement a scale invariant
platform by computing the difference of blurred images
using a gaussian kernel to blur the original image and
a set of scaled down images.

e Key point localization and selection of descriptive key
points: Localization of key points extracted from
generated Difference of Gaussian (DoG) images from
scale space and refinement of the detected keypoints
based on their stability and repeatability of detection.

e Orientation assignment: One or more orientations are
assigned to each key point locations based on local
image gradient directions in order to have a rotational
invariance.

e Generation of SIFT features: Descriptor to each located
key point is generated that makes them invariant to
local shape distortion and illumination variation.

Constructing a scale-space

An inherent property of real-world objects is that they
only exist as meaningful entities over certain ranges of
scale. A simple example is the concept of a branch of a
tree, which makes only sense in a range of few centimetres
to few meters. It is meaningless to discuss this example at
nanometre or kilometre level. At those levels, it is more
convenient to discuss about the molecules in a tree leave
and the forest where the tree grows respectively. The
construction of scale space attempts to replicate this
concept to digital images. The first step of key point
detection is to identify locations and scales that can be
repeatedly assigned under different views of the same
object. In this process, the points must be localized in a
way that they do not change their way of existence in the
original image at different scales. These stable features can
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be estimated with the use of a continuous function of scale,
referred as scale space [21].

SIFT uses Gaussian function [22] to generate its scale
space structure by progressively blurred out images
resulted from the original image and a set of scaled down
images by a factor of 2 [8,14,21,23]. The generation of
a Gaussian blurred image is illustrated in Eq. (1).

L(x,y,0) = G(x,y,0) *I1(x,y) (D
where,

L(x,y,0) : Resulted image from the convolution between
the input image, I (x, y) and gaussian kernel, G (x,y, o).

1 _(x2+y2)
G(x! Y, O-) = 27_[0_2 e 207

Here x,y are the spatial coordinates in 2-D space and
o is the standard deviation of the gaussian kernel. Fig. 3
illustrates the first two layers that contain progressively
blurred out Gaussian images in SIFT scale space structure.

Scaled RGB  Half scaled Gray Scale

Imaie

o =4.03 0—508 g=64 o =8.06

0—1016

Fig. 3. Few samples of scale space. (a) Resulted images
after convolving the original image with Gaussian kernel at
five different ¢ values where ¢ = 1.6, 2.02, ... , 5.07;
(b) Resulted images after convolving the scaled down
image by factor of 2 with gaussian kernel at five different o
values where 0 = 3.2, 4.03, ..., 10.16
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Once the Gaussian blurred images are computed, scale-
space is generated as illustrated in Figure 4.

A7 >

ikt r’(y'- —
' v /
K’rx-1:><@2"i’}d3? -

$tage 2: DoG images Stage 3: Dot
obtained after the images used far
Stage 1: Octaves subtraction between key point
with 6 different ¢ Siccassive seale Tovels localization
levels

Fig. 4. For each octave (set of Gaussian blurred images
obtained from Gaussian function as illustrated in Eq. (1) at
different ¢ in scale space, initial image is convolved with
Gaussian kernel at different o and the adjacent gaussian
images are subtracted to obtain DoG images. Each black
square illustrates a Gaussian blurred image with k"o,
where n=0,1,2..... Each blue square illustrates computed
DoG image by subtracting two adjacent Gaussian blurred
images (k"*'¢ and k"o). Each brown square illustrates
a resulted image after neighbour pixel comparison method

In SIFT, difference of Gaussian images (DoG) are
computed to detect stable feature locations in scale-space.
Eq. (2) illustrates how this approximation is computed on a
given set of Gaussian smoothed images [21].

D(x,y,0) = (G(x,y,ko) — G(x,y,0)) *I(x,y)
=L(x'y,k0)_ll(x'y,0) (2)

where,

D(x,y,0) :Resulted image from DoG,
G(x,y,ko) : Gaussian kernel at ko,
G(x,y,0) :Gaussian kernel at o,

L(x,y, ko) : Gaussian blurred image at ko,
L(x,y,0) :Gaussian blurred image at o,
1(x,y) : Input image.

Research paper |

Here, k = 10'°82/"  ; is the number of Gaussian
blurred images per octave. This process is illustrated in
stage 2 of Figure 4.

Key point localization and selection of descriptive key

points

In order to estimate, whether a particular point is a key
point, it must be differentiable from its neighbours. This is
accomplished in SIFT in a way that, a particular pixel in a
DoG image is compared with reference to its eight
neighbours and the corresponding nine neighbours
possessed by the above and below DoG images to
determine whether that particular point is a local extrema
or not [14,21]. Particular sample point will be decided as a
local extrema, only if it is the maximum or minimum
compared to its 26 neighbouring points [21]. Stage 3 of
Figure 4 illustrates how this process is accomplished.

Once the algorithm localizes the key point with the
proposed neighbour comparison method over successive
DoG images, it is required to find a detailed relationship to
nearby data for location, scale and ratio of principle
curvatures [21]. This information is used by the algorithm
to eliminate key points with unstable properties. SIFT uses
following procedure to identify the stability of the detected
key points.

e The algorithm finds the sub pixel accuracy of detected
keypoints using Taylor expansion [21];

e Then the algorithm performs contrast comparison of
detected keypoints against a predetermined threshold
value [21]. If the magnitude of the function computed
from Taylor expansion at the keypoint location is below
the defined threshold, it is discarded [21];

o Finally the algorithm discards keypoints that lic on the
edges of the image. This process is carried out because
DoG images contains a strong edge response, even if
the location along an edge is poorly determined [14,21].
Therefore, they are more unstable to small amount of
noise. The task of neglecting key points along an edge
is determined by computing Principle Curvatures (PC)
of resulted DoG image. A detailed explanation on this
process and how this is accomplished using hessian
matrix [24-26] is provided in [21].

At the end of this refinement process of detected key
points, it is said the remaining key points are invariant to
scale of the image [14,21]. The next step is to compute the
orientation of remaining set of key points, in order to make
them rotational invariant.

Orientation assignment

A good feature extraction algorithm must be capable
enough to detect same features inside the rotated versions
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of the same image which the key points were originally
detected. Therefore, it is required to make a detected key
point invariant to rotation. In SIFT, rotational invariance is
achieved by assigning orientation to each key point based
on local image properties. The estimation of the orientation
of a given key point (6,.) is performed by calculating the
gradient magnitudes and directions around a particular key
point within a defined neighbourhood inside the respective
Gaussian blurred image (L(x,y,k™0)). The selection of
L(x,y,k™0) is clearly explained in [21]. The orientation
assignment process is performed by calculating the
gradient magnitude, m(x,y) and the orientation, 0(x,y)
based on the pixel differences over each pixel that falls
within a defined circular neighbourhood of the key point.
The computation of m(x,y) and 6(x,y) is illustrated in Eq.
(3) and Eq. (4) respectively [14,21].

m(x,y) =
J(L(x +1,y)—L(x—1, y))2 +Le,y+ D) —-Lx,y—12 (3)

0(x,y) =tan™ ((L(x,y +1) = L(x,y — 1))/
/(L(x +1,y)—L(x—1, y)) 4)

The radius of the circular neighbourhood depends on
the scale of the key point and it is estimated as 1.5 X scale
[21], where scale can be defined as k™o where n =
1,2,....p. Once this process is completed, an orientation
histogram is calculated that has 36 bins, covering 360°
range of orientation, where the starting value of a bin can
be expressed in general as 0, = 2m(b —1)/36, where
b =1,2..36. A detailed explanation of this process is
provided in [21].

Generation of SIFT features

Algorithm has generated key points, which have
locations, scale, and orientation that will make them
invariant to scale and rotation, up to this stage of
processing. In real time images, there will be lots of
illumination variation and 3-D object transformations.
Therefore, there must be a way of making a particular key
point independent to these changes. At the final step of
SIFT algorithm, an unique identifier is generated based on
the local image region, that will make a scale and rotational
invariant key point to be distinctive over above stated
variations. In order to create SIFT descriptor for a key
point (xy, Vi), a square neighborhood with a width of
12k™0 is centered at the keypoint, in the direction of 6,..¢
inside its respective gaussian smoothed image. Then this
region is sub divided into 4 X 4 sub regions, which has a
width of 3kPo in each dimension. Then local gradients are
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computed inside each sub region. Then an 8-bin orientation
histogram is computed for each sub region. In this case, the
particular key point will have a descriptor that contains 128
(4 X 4 x 8) feature vectors. A detailed explanation on how
this process is accomplished is provided in [21]. The
detected key points on several model images by SIFT
algorithm are illustrated in Figure 5. According to Figure 5,
it can be clearly seen that over 95% of the detected key
points lie over the prominent object locations inside the
input image. The performance variation of SIFT under
different conditions will be evaluated in section 3.

Original Image

Key Point Detected Image

Fig. 5. Detected key points on solder pads, vias and test
pads on different PCBs at number of scales per sample = 3,
contrast threshold = 0.03, edge threshold = 10 and starting
scale () =1.6 using SIFT feature detector

2.2. SURF

SURF, Speed Up Robust Features, is a fast and robust
algorithm developed by H. Bay, for the detection of local
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invariant features and finds their subsequent matching in a
provided scene [15-17]. SURF has been developed with the
purpose of providing a fast computation on a given image,
which makes it an ideal algorithm for real time applications
like tracking and object recognition [16]. Similar to SIFT,

SURF also relies on scale space representation for the

detection of features that are scale and rotational invariant.

This algorithm has been proved to render better results with

higher speed and accuracy compared to SIFT [16]. The

implementation of SURF will be briefly discussed in four
steps in this paper.

e Generation of integral images and box filters: This
contains the generation of integral images and box
filters to approximate gaussian second order partial
derivatives.

e Constructing a scale-space: implement a scale invariant
platform with the use of box filters together with
integral images.

e Key point Localization: This contains the localization
of stable key points with the use of hessian matrix in
box filter space and computation the orientation of
detected features.

e Generation of SURF feature description: This contains
the generation of a unique identifier for each detected
key point as computed in SIFT.

Generation of integral images and box filters

In SIFT, scale-space is generated from the convolution
between a given input image and the Gaussian kernel at
different scale levels. It is not efficient in real time
applications due to the computational complexity of
Gaussian kernel [15-17]. As a way of speeding up this
process, SURF algorithm came up with an alternative
method. It takes the advantage of using integral images
[27] together with rectangular shape uniform kernels,
referred to as “box-filters” [17,28], in a way that their
combination approximates the role of Gaussian kernels in a
much efficient way [15,17]. Eq. (5) illustrates how the
pixel value of an integral image U at a point (x,y), is
computed from the corresponding input image /.

Ulx,y) = Zosisxz:osjsyl(i'j) ®)

where,
U(x,y): Value of integral image at (x, y)
I(i,j) : Value of input image I at (i, j)

According to Eq. (5), it is quite clear that value of an
integral image at point (x,y) means the summation of
pixels above that point in both x and y directions inside I. It
can be proved that it takes only three additions and four
memory lookups to calculate the sum of pixel intensities
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contained by any upright rectangular area formed inside I,
once the integral image is computed. SURF takes this
advantage and approximates LoG with box filters in
generating the scale space. The implementation of box
filters is a complex process. A detailed explanation on how
the box filters are computed is presented in [17].

In SIFT, the scale space is generated by down scaling
the original image at each octave while smoothing that
down scaled image at different ¢ levels. But with the use of
box filters together with integral images, there is no
requirement in SURF to iteratively apply the same filter to
the output of previously filtered layer [15]. SURF applies
box filters of any size at exactly the same speed directly on
the original image and even in parallel [15]. Therefore, the
scale space (also known as box space) is generated in
SURF, by up scaling the filter size rather than iteratively
reducing the image size [15]. This procedure outperforms
SIFT in terms of decreasing computational complexity in
generating scale space, while preserving high frequency
components that can be lost in zoomed-in variants of the
original image. As in SIFT, SURF also creates different
octaves (Fig. 4 stage 1) where each octave represents a
series of filter response maps obtained by convolving same
input image with a filter of increasing size as described
above. Figure 6 illustrates how the box filter space
structure in SURF looks like.

: | 27 |51 [75]09
i [s [mlap
9 | 152127 | |
1 2 4 8

Fig. 6. Graphical representation of how the size of the box
filter varies within three octaves

We have so far presented how the box space generation
is accomplished in SURF. Next step is to understand how
the stable key points are detected from the generated box
space in SURF.

Key point localization
Once the box space is generated, the next step is to
localize stable key points from the box space. The
procedure for detecting the key points can be explained in
three major steps in SURF [17]:
o Feature filtering: this is achieved with the use of scale-
normalized determinant of hessian.
o Feature selection: this is achieved with the combination
of non-maxima suppression and thresholding.
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e Scale space location refinement: this is achieved with
the use of second order interpolation.

Each of these steps contains complex computations.
Therefore, a detailed explanation of these methods does not
add a weighted outcome to our paper. A detailed
explanations on the implementation of each of these steps
can be found in [17].

Generation of SURF feature descriptor

The descriptor for a detected key point implemented in
SUREF, describes the intensity content within the key point
neighbourhood. This procedure is accomplished in a
similar way followed in SIFT and its variants for the
extraction of gradient information on a particular key point.
The process of defining an unique identifier/descriptor in
SUREF is based on two major steps.

e Orientation assignment around the key point to achieve
rotational invariance,

e Generating SURF descriptor based on the orientation
details to give a distinctive identity to each key point.

As described earlier in the key point localization, the
orientation assignment and generation of SURF descriptor
contain complex mathematical computations. we do not go
into more details of the implementation of these methods,
since providing a detailed explanation of the implementation
of these methods does not fall in the scope of this paper.
A complete description of the implementation of these
methods is available in [17]. The SURF descriptor is also a
16 X 4 vector that consists of mean and absolute mean
values of gradients extracted from a spatial grid (R) divided
into 4 X4 sub regions [17] as described in SIFT. The
detected key points on several model images by SURF
feature detector are illustrated in Figure 7.

According to Figure 7, it can be clearly seen that over
95% of detected key points lie on the object regions and
distinctive areas in a given image. The performance
variation of SURF under different conditions and the
accuracy of identifying similarities between model image
and input image will be evaluated later in this paper. We
have so far described very complex algorithms that have
been developed keeping a close approximation to human
vision in terms of having rotational and scale invariance of
detected features at a considerable amount of computation
cost. We will learn about a fast feature detection algorithm
that have been developed especially targeting for platforms
with less computational power, but require high speed
detection of features.

2.3. FAST

FAST, Features from Accelerated Segment Test
[18,29,30], is a fast corner detection algorithm developed
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by Edward Rosten and Tom Drummond. The main idea
behind the development of FAST algorithm is to have a
fast feature detector for real time applications, which are
running on platforms with limited computational power
[29]. In our application, the speed of detecting key points
does not play a major role, since the fiducials of a given
PCB are verified only once for that particular PCB. We
mainly focused on robustness and accuracy of this
algorithm to locate most stable features from a given input
image, which can be differentiable from other points on the
same PCB and other PCB types.

Original Image Key Point Detected Image

Fig. 7. Detected key points on solder pads, vias and test
pads on different colour PCBs at no. of octaves = 4,
threshold = 500, starting box filter size =9 X 9 using
SURF detector
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In FAST, estimation of a desired pixel, p is whether a
corner or not is accomplished based on its intensity level,
I, and its relationship to the 16 pixels, numbered in
clockwise direction that lie inside a circular region that has
the radius of 3 pixels [18,29]. Figure 8 illustrates how this
neighbourhood is implemented over a given candidate
pixel.

Gray scaled
image

Original image

Fig. 8. Selection of neighbouring pixels lie inside the
defined circle cantered at candidate pixel P (Yellow
Square)

A detailed explanation on how this neighbour
comparison process is carried out is presented in [18]. Once
the stable key points are detected as explained in [18], the
algorithm must compute an unique descriptor to each
detected key point as SIFT and SURF to make a detected
key point to be distinct. However, the authors of FAST do
not provide their own descriptor for the detected features.
Therefore, we used one of the well-known descriptor
algorithms, Binary Robust Independent Elementary
Features (BRIEF) [31], which has been developed for
generating a descriptor for detected key points from a
feature detector.

We know that SIFT and SURF use descriptors with the
sizes of 128 and 64 dimensional vectors respectively,
which lead to have memory constraints for the applications
which have limited memory capacity available. BRIEF
comes into picture at such situations with providing binary
strings for detected key points rather than computing
individual descriptor to each of them [31]. A detailed
explanation on how the BRIEF descriptor works can be
found in [31]. The detected key points on several model
images by FAST algorithm are illustrated in Figure 9.

As stated earlier, FAST is not a scale and rotational
invariant feature detector as SIFT or SURF. However, in
our application, these two properties do not add any
considerable impact on the performance of the algorithm.
Because the PCB is placed on a positioning bed and the
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distance between the camera and the PCB is precisely
controlled by the robotic system ensuring that no scale
distortion or a slight displacement occurs.

Original Image Key Point Detecte Image

Fig. 9. Detected key points on solder pads, vias and test
pads on different colour PCBs at I, =30 with non-
maximum suppression using FAST corner detector. Here I,
is a user defined threshold value

3. Performance evaluation of feature
extraction algorithms

In section 2, we illustrate how SIFT, SURF and FAST
feature detectors localize distinguishable features from a
given image. In order to evaluate performance of feature
extraction algorithms analysed in section 2, three main
evaluation criteria have been taken into consideration in
our application:
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e locations of detected key points,

e accuracy of the algorithm in various illumination
conditions with respect to the repeatability of detected
key points,

e number of correct and wrong matches made at different
illumination conditions with different distance matching
algorithms.

According to Figures 5, 7 and 9, it could be seen that
majority of the detected key points lie inside the object
regions in a given input image. Table 1 illustrates the
results obtained based on the localized region of key points
over 100 different images (this will be the size of the
sample which will be taken into consideration for rest of
the analysis carried out later in this paper) using these three
algorithms. There are two main regions have been
considered in this analysis process named as foreground
(region where the main object lies in the given input image
— solder pad, via, fiducial point etc.) and background
(region that does not contain the main object region — PCB
surface). The percentage of key points that are detected in
foreground and background regions is calculated with
respect to the total number of detected key points in a given
input image at normal illumination level. The normal
illumination level is taken in between 250-750 lux in our
application.

Table 1.

Average percentage of key points detected in the regions of

objects in SIFT, SURF and FAST feature detectors
Localized in Localized in

Algorithm foreground region  background region
SIFT 95% %
SURF 98% 2%
FAST 96% 4%

According to Table 1, it can be seen that all of these
feature detectors are capable of detecting features inside
foreground regions in a given image, even though SURF
slightly outperforms other two algorithms in terms of
accuracy in detecting key points.

As stated beginning of this paper, our proposed vision
system has been developed to integrate with a desktop
soldering robotic system. One of the main goals of the
proposed AOI system is its ability to operate in different
environments where no specific lighting is applicable.
Therefore, we have analysed the performance of these
algorithms at different illumination conditions as illustrated
in Table 2. We compared the repeatability of detected key
points inside the same image during consecutive trials (50
trials) at highly illuminated (lux level in between 1000 to
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1500) and poorly illuminated (lux level in between 75 to
200) conditions against the key points detected inside the
same image at normal illumination level.

Table 2.

Average repeatability percentage of key points detected
inside given images using SIFT, SURF and FAST feature
detectors at different illumination levels

Algorithm ~ (1000-1500) lux ;‘;" level <200
SIFT 78.5% 86%
SURF 82% 85%
FAST 72% 76%

According to Table 2, it can be clearly seen that SIFT
and SURF algorithms outperform FAST at different
illumination levels in terms of key point detection
repeatability. Even though SURF outperforms SIFT at
highly illuminated environments, SIFT takes the advantage
in less illuminated environments. Once the key points are
detected on a sample image (In our case model image),
their robustness to be precisely detected in a given input
image (In our case located image) must be fairly evaluated.
This task is accomplished with the use of a feature
matching algorithm that is capable of matching descriptors
of the detected features of a model image to the descriptors
of detected features of a located image (/7). In our
application, two main feature matching algorithms have
been evaluated for matching feature descriptors that are
generated for both [, and [;.

e Brute Force Matcher [10],
e Fast Library for Approximate Nearest Neighbour

(FLANN) [10].

In our application, three main distance calculation
methods, L1-norm distance calculation, L2-norm distance
calculation and hamming distance calculation [10] have
been used for brute-force matcher.

We have so far described several feature matching and
distance calculation algorithms that can be used to match
features between a model image (I,;) and located image
(I). Now it is required to evaluate the performance of these
algorithms based on their stability and accuracy of
matching features under varying illumination conditions. In
our application, number of matched points and the
accuracy of matching between I, and I, have been
analyzed in two ways as listed below.

e Percentage of erroneous matching between given Iy
and [},

e  Percentage of correct matching between given [, and
I.
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Here, the erroneous detection percentage means the
number of falsely matched key points out of the detected
key points in I; to the detected key points in I. The
successful detection percentage is the opposite of erroneous
detection percentage. Both of these points are analysed
under three different illuminations conditions as presented
in Table 2. Tables 3-5 illustrate the erroneous detection rate
of these three feature detectors together with feature
descriptor matching algorithms at illumination levels of
(250-750) lux, (75-200) lux and (1000-1500) Iux
respectively. Figures 10-12 illustrates several examples of
the application of these feature detectors together with
descriptor matching algorithms.

According to the results obtained in Tables 3-5, it can
be seen that SURF is still able to hold the erroneous
detection rate below 2% for each feature matching
algorithm, even though FAST holds the lowest figure
with FLANN in Tables 3 and 4. Another interesting point
that can be revealed with the obtained results is that
FLANN feature matching library provides the best
accuracy for all three feature detectors. Tables 6-8
illustrates the successful average detection percentage
obtained by these algorithms.

Table 6.
Percentage of successful matching between given model
images and located images at (250-750) lux

Table 3. .
Percentage of erroncous matching between given model ?Ilgorlthm L1-Norm  L2-Norm FLANN
images and located images at (250-750) lux ame
Algorithm SIFT 4.7% 4.4% 1.5%
Name L1-Norm  L.2-Norm FLANN SURF 18.5% 17.7% 41.1%
SIFT 6.93% 5.72% 0.13%
SURF 0% 0.09% 0.56% Algorithm  L1- L2- .
Nail : Nomm  Nemn ~ Hamming FLANN
Algorithm  L1- L2- Hammine FLANN FAST 17.3%  8.4% 14.9% 8.2%
Name Norm Norm &
FAST 12.66% 523%  7.33% 0.02%
Table 7.
Table 4. Percentage of successful matching between given model

Percentage of erroneous matching between given model

images and located images at (75-200) lux

images and located images at (75-200) lux Algorithm L1-Norm  L2-Norm FLANN
Algorithm | L2-N FLANN Rame
Name -horm -orm SIFT 3.3% 3% 0.6%
SIFT 10.05% 9.02% 2.1% SURF 15.2% 14.3% 36.5%
SURF 1.9% 1.3% 1.1%

Algorithm  L1- L2- .
: : : Hamming FLANN

Algorithm L1 L2 Hamming FLANN Name Norm Norm
Name Norm  Norm FAST 143%  56%  10.1% 6.5%
FAST 19.5% 11.2% 18% 1.8.%

Table 5. Table 8.

Percentage of erroneous matching between given model
images and located images at (1000-1500) lux

Percentage of successful matching between given model
images and located images at (1000-1500) lux
Algorithm

Iﬁ;i’:thm Ll-Norm  L2-Norm FLANN Name L1-Norm  L2-Norm FLANN
SIFT 11.5% 10% 28% SIFT 3.15% 2.9% 0.45%
SURF 1.2% 1.8% 1.3% SURF 14.5% 14.1% 35.3%
Algorithm  L1- L2- . Algorithm  L1- L2- .

Name Norm Norm Hamming FLANN Name Norm Norm Hamming FLANN
FAST 173%  16.8%  14.5% 4.8% FAST 13.1%  4.8% 9.3% 6.2%
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Leamnt Fiducial Image with —)
75 key points detected

No of matching key points detected No of matching key points detected No of matching key points detected
at L1-morm at L.2-morm at FLLANN over the model image

—

No of Key pts: 179 & Matched pts: 5 No of Key pts: 179 & Matched pts: 4 No of Key pts: 179 & Matched pts: Q

Fig. 10. Feature matching between images using SIFT together with distance measurement algorithms

Feature extraction and template matching algorithm classification for PCB fiducial verification
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Leamnt Fiducial Image with—

107 key points detected

No of matching key points detected No of matching key points defected No of matching key points defected
at L1-norm at L2 norm at FLANN over the model image

e

No of Key pts: 203 & Matched pts: 0 No of Key pts: 203 & Matched pts: 0 No of Key pts: 203 & Matched pts: 1

Fig. 11. Feature matching between images using SURF together with distance measurement algorithms
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Learnt Fiducial Im age with p—
123 key paoints detected

No of matching key points detected No of matching key points detected No of matching key points detected
at L1-norm at L2 -norm at FLLANN over the modd image

No of Key pts: 363 & Matched pts: 55 No of Key pts: 363 & Matched pts: 23 No of Key pts: 363 & Malched pts: D

Fig. 12. Feature matching between images using FAST together with distance measurement algorithms

Feature extraction and template matching algorithm classification for PCB fiducial verification
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According to the results obtained in Tables 6-8, it can
be seen that the SURF algorithm is able to hold its
successful detection percentage above 30% even at
different illumination levels. This further means that SURF
together with FLANN is capable of precisely matching
nearly 30 key points out of 100 detected key points in [; to
the corresponding 30 keypoints in ;. The successful PCB
fiducial image identification of SURF can be made further
clear according to Figures 10-12. The computation time of
an algorithm was not taken into consideration during our
analysis because the expected accuracy is more important
than the processing time. In addition to that fiducial
verification process is carried out only one time per a given
PCB. Therefore, the processing time will not add a
significant benefit to our application. According to the
results obtained in Tables 1-8, it should be obvious that
SURF together with FLANN enables to have more stable
and accurate detection rate for fiducial verification in our
application.

The next step is the precise detection of model image
area inside the located image once the proposed feature
detection algorithm assures the occurrence of the model
image inside the located image. As we have stated earlier
in this paper, once the fiducial image is identified and
localized inside a located image acquired from the camera
view, the system calculates the distance to the centre of the
localized region from the robotic system origin. This
process is utilized at least over two user defined fiducial
images. Once these two distances are calculated, the vision
system calculates relative distances to other points on the
PUS reference to these distances. Therefore, it must be
clear that the precise localization of exact area contained by
the fiducial image is very important in our application. We
have analysed the performance of two methods to
accomplish this task at highest accuracy to estimate the
model image area inside the located image as listed below:
e Using homography matrix,

e Using template matching techniques.

A homography is a perspective transformation of a
plane that is a re-projection of a plane from one camera
view into a different camera view subjective to change in
the position and orientation of the camera. Homography
matrix is a 3x3 transformation matrix that is used to
perform this transformation between planes. It is required
to have minimum of four points to find this transformation
matrix. In our application, we use set of points that have
been matched between I, and I; with our proposed feature
detector and find the corresponding perspective
transformation matrix. Once this 3x3 matrix is computed, it
is used to find the corners of I; to corresponding points in
I. Figure 13 illustrates the results obtained with the use of
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a homography matrix generated from correctly matched
points between several images.

Fig. 13. Falsely detected areas of the model image inside
the input image using homography matrix

According to Figure 13, it is obvious that the estimation
of model image area inside the input image with
homography matrix is far beyond the expected accuracy in
our application. We have proved earlier in this paper that
template matching would not be a good choice to localize a
model image inside a given input image, when the
existence of model image is unknown (Fig. 1). But at this
stage of our application, we have confirmed the existence
of I inside [;with our proposed feature detector.
Therefore, there might be a possibility to have a precise
localization of model image area inside located image
using template matching algorithms. Section 4 presents a
performance evaluation of six different template matching
algorithms over a sample of 100 images.

4. Performance evaluation of template
matching algorithms (TM)

Template matching is a high level machine vision
technique that localizes the best matched location of a
model image inside a given input image [6]. Template
matching techniques are flexible and relatively
straightforward to use, which makes them one of the
popular methods of object localization in the fields of
surveillance, vehicle tracking, robotics, medical imaging,
manufacturing and etc. [7]. The occurrence of similarities,
resulted from comparison between I, and I;, are reflected
in the resulted image (Iz). In this paper, six types of

C.L.S.C. Fonseka, J.A.K.S. Jayasinghe



template matching techniques, squared difference
(TM_SQDIFF) error, normalized squared difference
(TM_SQDIFF _NORMED) error, concept of correlation
[32] among [, and I, (TM_CCORR), concept of
normalized version of correlation among [, and I
(TM_CCORR NORMED), concept of correlation
coefficient (TM_CCOEFF) and normalized version of
correlation coefficient (TM_CCOEFF_NORMED) [9,10]
have been discussed and analysed for accurately
identifying the location of I, inside I;.

The basic concept of a template matching algorithm is
to find objects in a given image, which have minimum
error difference with a model image as explained with the
six different template matching methods in [9,10]. The
complexity of these methods varies starting from simple
squared difference of error between I, and I, to more
complex processes like computing correlation and

correlation coefficient between I, and I;. The performance
of each template matching algorithm is evaluated to find
out the best suited algorithm for the localization of fiducial
area inside the located image. Figure 14 illustrates the
outcome of these algorithms over the feature matched
images using SURF. Table 9 illustrates the acquired results
over 100 different images.

TM_CCORR_NOREMD TM_SODIFF TH_SODIFF_NORMED

Fig. 14. Model image localization inside given input image
using template matching algorithms

Feature extraction and template matching algorithm classification for PCB fiducial verification

Volume 86 ¢ Issue 1 ¢ January 2018

Table 9.
Successful detection rate of template matching algorithms
over the feature matched located images

Template Matching Algorithm  Success Rate

TM_CCOEFF 100%
TM_CCOEFF_NORMED 100%
TM_CCORR 100%
TM_CCORR_NORMED 100%
TM_SQDIFF 100%
TM_SQDIFF_NORMED 100%

According to Table 9, it can be seen that almost every
algorithm showed the best performance in precise
localizing of the given model image. However, we have to
keep in mind that these results have been obtained
assuming an ideal condition of a given PCB. It means that
it is assumed that the PCB has no manufacturing impurities
like, the sizes of the objects on a PCB may not be unique
over range of PCBs. The template matching algorithms are
vulnerable to dimension changes of input images.
Therefore, it is required to find the most robust algorithm
out of these algorithms, which is less vulnerable to slight
dimension changes of located images. In order to utilize
this analysis process, we scaled down the located images
by 2% from their actual size and verified with the template
matching algorithms. Figure 15 illustrates the outcome of
this process.

TM_CCORR

TM_CCORR_NOREMD

TM_5QDIFF

TM_CCORR_NOREMD TM_S0DIFF TM_SODIFF_NORMED

Fig. 15. Results obtained from template matching
algorithm over 2% scaled down images
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According to Figure 15, it can be seen that
TM _CCORR is still capable of rendering most accurate
results even with the slight variation of size of a located
image. Table 10 contains the results obtained over 100
different scaled down images by a percentage of 2%.

Table 10.

e Reduces the risk of soldering iron touching nearby
components, since this process ensures the precise
positioning of the system and it assures whether the
placed PCB is the actual one to be soldered,

e Makes the system independent from the skill level of
the operator.

Successful detection rate of template matching algorithms
over the scaled down located images by a percentage of 2% Position PCB at n" fiducial Position (&= Iﬁfgsgfal
Template Matching Algorithm  Success Rate v Descriptor
Storage
TM_CCOEFF 92% Detect features from the located
TM_ CCOEFF _NORMED 92.5% image using SURF Acquire n"
fiducial
TM_CCORR 95% v desoriptor
T™ CCORR NORMED 80% Feature matching between n™ fiducial P
— — and located image using FLANN o~
TM_SQDIFF_NORMED 83%

Even though TM_CCORR gives the highest successful
detection rate, it is still not perfect. However, the effect of
this 5% error can be made further minimized with the
procedures described in our paper [3] that describes the
precise identification of solder pad area from the PCB
surface.

5. Conclusions

The main goal of this paper is to evaluate the
performance of feature extraction and template matching
algorithms in terms of their robustness and efficiency in
precise identification and localization of fiducial image
inside a given image. We were able to find out the most
precise method to identify and localize the learnt PCB
fiducials, that is independent from the operator‘s skill level
and interaction using SURF together with FLANN and
TM_CCORR. We have analysed the performance of these
algorithms under different illumination conditions and
scale variations of the located image. The identified
methods could be proven to be less vulnerable to these
practical imperfections according to the analysis carried out
during the implementation of our proposed fiducial
verification process (Tables 1-10). Figure 16 illustrates
how this fiducial verification process is implemented in our
application.

The accurate identification of fiducials adds significant
benefits to the overall performance of the robotic system as
listed below.

e Enables very precise positioning of the points to be
soldered;

Research paper |

Fiducial NO
Detected?
Localize n" fiducial region with
TM CCORR
NO
n=n+1I
Yes v

Process is aborted

Fiducial verification process is > 3
and user is notified

successful

Fig. 16. Process flow structure of the proposed fiducial
verification process

Once the fiducials are precisely localized by the vision
system, the next step is to calculate all the relative
distances to the THT solder pads that should be soldered by
the robotic platform. The procedure of detecting whether
the particular solder pad is precisely positioned by the
robotic  system  positioning mechanism has been
informatively presented in the published paper by us [3].
The completion of the proposed AOI system requires
another two main stages to be operational.

e Automatic detection of THT component lead and
localization of its location after the soldering process is
completed.

e Implementation of methods to perform automatic
quality assurance of a THT solder joint.
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